Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Two [$\mathrm{Cu}_{2} \mathbf{I}_{2}$]-based coordination polymers of 1,3-bis(pyridin-4-yl)propane

Li-Min Wan, Zhou Yang, Ai-Xia Zheng, Zhi-Gang Ren and Jian-Ping Lang*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
Correspondence e-mail: jplang@suda.edu.cn

Received 7 May 2012
Accepted 5 June 2012
Online 15 June 2012

Solvothermal reactions of $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ with 1,3-bis(pyridin4 -yl)propane (bpp) in the presence of aqueous ammonia in 4-iodotoluene/ $\mathrm{CH}_{3} \mathrm{CN}$ or 1,4-diiodobenzene/ $\mathrm{CH}_{3} \mathrm{CN}$ afforded two $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$-based coordination polymers, namely catena-poly[[[di- μ-iodido-dicopper(I)]-bis[μ-1,3-bis(pyridin-4-yl)propane $\left.\left.-\kappa^{2} N: N^{\prime}\right]\right] p$-toluidine tetrasolvate $],\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\right]\right.$-$\left.4 \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right\}_{n}$, (I), and the analogous 1,4-diiodobenzene monosolvate, $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2}\right\}_{n}$, (II). The $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ unit of (I) lies on a centre of symmetry at the mid-point of the two I atoms, while that of (II) has a twofold axis running through the I \cdots I line. In (I) and (II), each Cu centre is tetrahedrally coordinated by two μ-I and two N atoms from two different bpp ligands. Each rhomboid $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ unit can be considered as a four-connecting node linked to the symmetry-related $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ units via two pairs of bpp ligands to form a one-dimensional double chain along the c axis. The dimensions of the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right]_{2}$ rings in (I) and (II) are different, which may be due to the presence of different guest solvent molecules in the structures. In (I), one p-toluidine molecule, derived from an Ullmann coupling reaction of 4-iodotoluene with ammonia, interacts with the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ cluster fragment through $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds, while the two p-toluidine molecules interact via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In (II), two I atoms of each 1,4-diiodobenzene molecule are linked to the I atoms of the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ fragments from a neighbouring chain via $\mathrm{I} \cdots \mathrm{I}$ secondary interactions.

Comment

In recent years, the construction of cluster-based coordination polymers has attracted much interest due to their structural diversity (Fujita, 1998; Blake, Champness et al., 1999; Leininger et al., 2000; Naumov et al., 2002; Tulsky et al., 2003; Wang et al., 2008) and their applications in storage and separation processes (Ma et al., 2007; Cotton et al., 2004; Chatterjee et al., 2004; Rosi et al., 2003), magnetism (Kahn, 2000), catalysis (Fujita et al., 1994; Pan et al., 2003; Hasegawa et
al., 2007; Lin \& Wu, 2007) and other potential uses (Beauvais et al., 2000; Horcajada et al., 2006). Cu^{I} salts are used in reactions with N -donor ligands to form cluster-based coordination polymers of various structural motifs, such as rhomboid [$\mathrm{Cu}_{2} \mathrm{I}_{2}$] dimers (Biradha et al., 2000; Hu et al., 2006; Graham \& Pike, 2000; Thébault et al., 2006; Niu et al., 2006; Araki et al., 2005), cubane-like $\left[\mathrm{Cu}_{4} \mathrm{I}_{4}\right]$ tetramers (Blake et al., 2001), zigzag $[\mathrm{CuI}]_{n}$ or $\left[\mathrm{Cu}_{3} \mathrm{I}_{4}\right]_{n}^{n-}$ chains (Graham \& Pike, 2000; Thébault et al., 2006; Cheng et al., 2004), double-stranded $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]_{n}$ ladders or ribbons (Graham \& Pike, 2000; Thébault et al., 2006; Cheng et al., 2004), and two-dimensional [CuI $]_{n}$ layers (Thébault et al., 2006; Peng et al., 2005; Blake, Brooks et al., 1999). Many factors like reaction temperature, pH value and the symmetry of the ligands can exert a great influence on the construction and structure of $\left[\mathrm{Cu}_{x} \mathrm{I}_{x}\right]$-based coordination polymers, but solvent effects on the assembly and structure of such polymers have been less well explored (Chen et al., 2008). Herein, we report the crystal structures of two $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$-based coordination polymers, $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right] \cdot 4(p \text {-toluidine })\right\}_{n} \quad[\mathrm{bpp}$ is 1,3-bis-(pyridin-4-yl)propane], (I), and $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right] \cdot 1,4\right.$-diiodobenzene $\}_{n}$, (II), which were obtained from solvothermal reactions of $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ with bpp and aqueous ammonia in 4-iodotoluene/ $\mathrm{CH}_{3} \mathrm{CN}$ and 1,4-diiodobenzene/ $\mathrm{CH}_{3} \mathrm{CN}$, respectively.

(I)

(II)

The asymmetric unit of (I) contains half a $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right]$ unit and two p-toluidine solvent molecules (Fig. 1), while that of (II) consists of half a $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right]$ unit and half a 1,4 -diiodobenzene solvent molecule (Fig. 2). In (I) and (II), each Cu atom is tetrahedrally coordinated by two μ-I and two N atoms from two different bpp ligands. The $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ unit of (I) lies on a centre of symmetry at the mid-point of atoms I1 and I1 ${ }^{\text {i }}$ [symmetry code: (i) $-x,-y,-z+1$], while that of (II) has a twofold axis running along the I1 $\cdots \mathrm{I} 2$ line. Each rhomboid [$\mathrm{Cu}_{2} \mathrm{I}_{2}$] unit can be viewed as a four-connecting node linking symmetry-equivalent $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ units via two pairs of bpp ligands to afford a one-dimensional double chain along the c axis. [Fig. 3 for (I) and Fig. 4 for (II)].

The $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{\mathrm{i}}$ distance in (I) $[2.7366$ (19) \AA] is slightly shorter than that observed in $\left[\mathrm{Cu}_{2} \mathrm{I}_{2} L_{4}\right]_{n}[2.781(2) \AA, L=$ 3-methylpyridine; Rath et al., 1986], but longer than those found in $\left[\mathrm{Cu}_{2} \mathrm{I}_{2} L_{4}\right]_{n}[2.699(5) \AA, L=$ pyridine; Dyason et al., 1984] and $\left[\mathrm{Cu}_{2} \mathrm{I}_{2} L_{4}\right]_{n}[2.687$ (3) $\AA, L=3,5$-dimethylpyridine; Healy et al., 1983]. The length of the $\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$ contact [3.6543 (11) Å] in (II) precludes any metal-metal interaction.

Figure 1
A segment of the chain of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x,-y,-z+1$; (ii) $x, y, z+1$; (iii) $-x,-y,-z$.]

The mean $\mathrm{Cu}-\mathrm{I}$ bond length in (I) [2.6608 (9) \AA; Table 1] is comparable with that in $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right] \cdot 2 \text { (aniline) }\right\}_{n}$ [2.6674 (19) \AA; Chen et al., 2008], but shorter than those in (II) $[2.7392(8) \AA]$ or $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\text { bpe })_{2}\right] \cdot \mathrm{Am}\right\}_{n}[\mathrm{Am}=$ aniline, 2.7939 (15) $\AA ; \mathrm{Am}=p$-toluidine, 2.7415 (11) \AA; Yang et al., 2011]. The average $\mathrm{Cu}-\mathrm{N}$ bond length of 2.051 (2) \AA in (I) is longer than those observed in (II) [2.027 (4) \AA; Table 3] or $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\text { bpe })_{2}\right] \cdot \mathrm{Am}\right\}_{n} \quad[\mathrm{Am}=$ aniline, $2.006(2) \AA ; \mathrm{Am}=$ p-toluidine, 2.014 (3) \AA], but slightly shorter than those in $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right] \cdot 2(\text { aniline })\right\}_{n} \quad[2.064(7) \AA]$ and $\left[\mathrm{Cu}_{2} \mathrm{I}_{2} L_{4}\right]_{n}$ [2.06 (3) $\AA, L=3,5$-dimethylpyridine; Healy et al., 1983].

Each bpp ligand in (I) and (II) adopts a trans-trans configuration (Chen et al. 2008). However, as the pyridine rings are rotated around the $\mathrm{Cu}-\mathrm{N}$ direction, the bpp ligand in (I) is not planar, with a dihedral angle of $70.64(15)^{\circ}$ between the two pyridine rings, while that of (II) is approxi-

Figure 2
A segment of the chain of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x, y,-z+\frac{1}{2}$; (ii) $-x, y,-z+\frac{3}{2}$; (iii) $x, y, z-1$.]
mately planar, with a dihedral angle of 12.5 (2) ${ }^{\circ}$ between the two pyridine rings. The $\mathrm{N} 1 \cdots \mathrm{~N} 2$ separation $[9.595$ (4) $\AA]$ in (I) is shorter than that in (II) $[10.179$ (6) $\AA]$. On the other hand, the one-dimensional chains in (I) and (II) may be viewed as a sequence of 28 -membered $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})\right]_{2}$ metallomacrocycle rings (Perera et al., 2010; Chan et al., 2009), which are constructed of two $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ and two bpp ligands. The dimensions of these metallomacrocycle rings in (I) and (II) are roughly 12.96×8.27 and $13.76 \times 7.79 \AA$, respectively. These differences may be ascribed to solvent effects, which greatly influence the structures of $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$-based coordination polymers (Blake et al., 2001; Chen et al., 2008; Yang et al., 2011).

In the formation of (I) and (II), $\mathrm{Cu}^{\mathrm{II}}$ may be reduced by bpp and/or iodide and the resulting Cu^{I} may combine iodides to produce the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ species (Yang et al. 2011). The latter have then been captured by bpp ligands to yield the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$-based frameworks of (I) and (II). In (I), the p-toluidine guest molecules have been generated in situ through an Ullmann coupling reaction of 4-iodotoluene with ammonia (Chen et al. 2008).

In (I), two p-toluidine molecules interact with each other via intermolecular hydrogen bonds between two amino groups

Figure 3
A view of the one-dimensional chain of (I), extending along the c axis. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds. (In the electronic version of the paper, atom colour codes are: Cu cyan, I pink, N blue, C grey and H green.)

Figure 4
A view of the one-dimensional chain of (II), extending along the c axis. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate $\mathrm{I} \cdots \mathrm{I}$ secondary interactions. (In the electronic version of the paper, atom colour codes are: Cu cyan, I pink, N blue, C grey and H green.)
($\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 3$; Table 2). The NH_{2} group of one p-toluidine molecule binds the I atom of the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ fragment through an intermolecular hydrogen bond (N3-H3‥I1) (Ciunik \& Desiraju, 2001) (Fig. 3).

In (II), the two I atoms of each 1,4-diiodobenzene molecule interact with the I atoms of the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\right]$ fragments from an adjacent chain via an $\mathrm{I} \cdots \mathrm{I}(-x,-y+1,-z)$ secondary interaction [3.6200 (9) Å] (Fig. 4).

Experimental

$\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}(22 \mathrm{mg}, 0.1 \mathrm{mmol})$, bpp ($20 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4-iodotoluene ($150 \mathrm{mg}, 0.7 \mathrm{mmol}$), aqueous ammonia ($25 \%, 1.5 \mathrm{ml}$) and $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{ml})$ were added to a Pyrex glass tube (15 cm long \times 7 mm inner diameter). The tube was sealed and heated in an oven at 423 K for 70 h , and then cooled to room temperature at a rate of 5 K per 100 min to form yellow prisms of $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right] \cdot 4(p \text {-toluidine })\right\}_{n}$, (I), which were collected by filtration, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and dried in air (yield: $21 \mathrm{mg}, 30 \%$ based on bpp). Analysis found: C 53.59, H $5.29, \mathrm{~N} 9.20 \%$; calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{CuIN}_{4}$: C 53.78, H $5.35, \mathrm{~N} 9.29 \%$. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3427 (w), $3380(w), 3301$ (w), 3209 (w), 3022 (w), 2926 (w), 2860 (w), 1608 (s), 1514 ($s), 1421$ (m), 1262 (m), 1220 (m), 1011 (w), 809 (s), $610(w), 512(m)$.
$\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3} \quad(22 \mathrm{mg}, \quad 0.1 \mathrm{mmol}), \quad$ bpp $(20 \mathrm{mg}, \quad 0.1 \mathrm{mmol})$, 1,4-diiodobenzene ($33 \mathrm{mg}, 0.1 \mathrm{mmol}$), aqueous ammonia $(25 \%$, $0.2 \mathrm{ml})$ and $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{ml})$ were added to a Pyrex glass tube $(15 \mathrm{~cm}$ long $\times 7 \mathrm{~mm}$ inner diameter). The tube was sealed and heated in an oven at 423 K for 70 h , and then cooled to room temperature at a rate of 5 K per 100 min to form orange blocks of $\left\{\left[\mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{bpp})_{2}\right] \cdot 1,4-\right.$ diiodobenzene $\}_{n}$ (II), which were collected by filtration, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and dried in air (yield: $0.021 \mathrm{~g}, 30 \%$ based on bpp). Analysis found: C $34.69, \mathrm{H} 2.89, \mathrm{~N} 5.10 \%$; calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CuI}_{2} \mathrm{~N}_{2}$: C 34.71, H 2.91, N 5.06\%. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3425 (w), 3378 (w), 3206 (w), 3021 (w), 2923 (w), 2856 (w), 1602 (s), 1509 (s), 1417 (s), 1258 (m), 1218 (m), 1008 (w), $805(s), 613(w), 512(m)$.

Compound (I)

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\right] \cdot 4 \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$	$\gamma=109.30(3)^{\circ}$
$M_{r}=1206.02$	$V=1313.4(5) \AA^{3}$
Triclinic, $P \overline{1}$	$Z=1$
$a=10.119(2) \AA$	$\mathrm{Mo} K \alpha$ radiation
$b=12.370(3) \AA$	$\mu=2.03 \mathrm{~mm}^{-1}$
$c=12.962(3) \AA$	$T=223 \mathrm{~K}$
$\alpha=103.19(3)^{\circ}$	$0.60 \times 0.60 \times 0.40 \mathrm{~mm}$
$\beta=111.06(3)^{\circ}$	

Data collection

Rigaku Saturn 724+ CCD areadetector diffractometer
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.376, T_{\text {max }}=0.498$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.069$
$S=0.95$
5891 reflections
12464 measured reflections 5891 independent reflections
4782 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

300 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.77{\mathrm{e} \AA^{-3}}^{-3}$

Compound (II)

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2}$
$M_{r}=1107.30$
Monoclinic, $C 2 / c$
$a=17.700$ (4) A
$b=14.604$ (3) \AA
$c=13.757$ (3) \AA
$\beta=109.53$ (3) ${ }^{\circ}$

Data collection

Rigaku Saturn 724+ CCD areadetector diffractometer
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.174, T_{\text {max }}=0.253$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.12$
3058 reflections
$V=3351.4(12) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=4.98 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
$0.54 \times 0.40 \times 0.38 \mathrm{~mm}$

15742 measured reflections 3058 independent reflections 2902 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

191 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.84 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.67 \mathrm{e} \AA^{-3}$

All H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ for methyl groups, $0.99 \AA$ for methylene groups and $0.95 \AA$ for phenyl groups, or $\mathrm{N}-\mathrm{H}=0.85 \AA$ for amino groups, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for phenyl and amino groups, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups.

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (I).

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.050(2)$	$\mathrm{Cu} 1-\mathrm{I} 1^{\mathrm{ii}}$	$2.6746(9)$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.051(2)$	$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$2.7366(19)$
$\mathrm{Cu} 1-\mathrm{I} 1$	$2.6470(7)$	$\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$2.6746(9)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$110.41(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$125.17(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 1$	$107.30(7)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$124.41(7)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{I} 1$	$107.55(7)$	$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$59.55(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I}^{\mathrm{ii}}$	$107.16(6)$	$\mathrm{I} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$58.56(3)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{I} 1^{\mathrm{ii}}$	$106.24(7)$	$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$61.89(4)$
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 1^{1 i}$	$118.11(4)$		

Symmetry codes: (i) $x, y, z+1$; (ii) $-x,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3AA \cdots I1	0.85	2.99	$3.793(3)$	158
N4-H4B $\cdots \mathrm{N} 3$	0.85	2.41	$3.228(4)$	160

The authors thank the National Natural Science Foundation of China (grant Nos. 20901054, 90922018 and 21171124), the Natural Science Key Basic Research Foundation of Jiangsu Province for Higher Education (grant No. 09KJA150002), the Specialized Research Fund for the Doctoral Programme of Higher Education of the Ministry of Education (grant No. 20093201110017), the Qin-Lan and '333' Projects of Jiangsu Province, and the 'Soochow Scholar' Programme of Soochow University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: YF3014). Services for accessing these data are described at the back of the journal.

References

Araki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. \& Kitamura, N. (2005). Inorg. Chem. 44, 9667-9675.
Beauvais, L. G., Shores, M. P. \& Long, J. R. (2000). J. Am. Chem. Soc. 122, 2763-2772.
Biradha, K., Aoyagi, M. \& Fujita, M. (2000). J. Am. Chem. Soc. 122, 23972398.

Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A., Fenske, D., Hubberstey, P., Li, W. S. \& Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.
Blake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Deveson, A., Fenske, D., Gregory, D. H., Hanton, L. R., Hubberstey, P. \& Schröder, M. (2001). Chem. Commun. pp. 1432-1433.
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. \& Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.
Chan, Y. T., Li, X. P., Soler, M., Wang, J. L., Wesdemiotis, C. \& Newkome, G. R. (2009). J. Am. Chem. Soc. 131, 16395-16397.

Chatterjee, B., Noveron, J. C., Resendiz, M. J. E., Liu, J., Yamamoto, T., Parker, D., Cinke, M., Nguyen, C. V., Arif, A. M. \& Stang, P. J. (2004). J. Am. Chem. Soc. 126, 10645-10656.
Chen, Y., Li, H. X., Liu, D., Liu, L. L., Li, N. Y., Ye, H. Y., Zhang, Y. \& Lang, J. P. (2008). Cryst. Growth Des. 8, 3810-3816.

Table 3
Selected geometric parameters ($\AA^{\circ},^{\circ}$) for (II).

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.023(4)$	$\mathrm{Cu} 1-\mathrm{I} 2$	$2.7412(8)$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.030(4)$	$\mathrm{I} 1-\mathrm{Cu} 1^{i i}$	$2.7371(8)$
$\mathrm{Cu} 1-\mathrm{I} 1$	$2.7371(8)$	$\mathrm{I} 2-\mathrm{Cu} 1^{1 i}$	$2.7412(8)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$124.21(15)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{I} 2$	$108.25(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 1$	$110.57(10)$	$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$96.32(3)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{I} 1$	$108.22(10)$	$\mathrm{Cu}-\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	$83.76(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$105.60(10)$	$\mathrm{Cu} 1^{\mathrm{ii}}-\mathrm{I} 2-\mathrm{Cu} 1$	$83.60(3)$

Cheng, J. K., Yao, Y. G., Zhang, J., Li, Z. J., Cai, Z. W., Zhang, X. Y., Chen, Z. N., Chen, Y. B., Kang, Y., Qin, Y. Y. \& Wen, Y. H. (2004). J. Am. Chem. Soc. 126, 7796-7797.
Ciunik, Z. \& Desiraju, G. R. (2001). Chem. Commun. pp. 703-704.
Cotton, F. A., Lei, P., Lin, C., Murillo, C. A., Wang, X. P., Yu, S. Y. \& Zhang, Z. X. (2004). J. Am. Chem. Soc. 126, 1518-1525.

Dyason, J. C., Engelhardt, L. M., Healy, P. C. \& White, A. H. (1984). Aust. J. Chem. 37, 2201-2205.
Fujita, M. (1998). Chem. Soc. Rev. 27, 417-425.
Fujita, M., Kwon, Y. J., Washizu, S. \& Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
Graham, P. M. \& Pike, R. D. (2000). Inorg. Chem. 39, 5121-5132.
Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y. \& Kitagawa, S. (2007). J. Am. Chem. Soc. 129, 2607-2614.

Healy, P. C., Pakawatchai, C. \& White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1917-1927.
Horcajada, P., Serre, C., Vallet-Regi, M., Seban, M., Taulelle, F. \& Férey, G. (2006). Angew. Chem. Int. Ed. 45, 5974-5978.

Hu, S., Zhou, A. J., Zhang, Y. H., Ding, S. \& Tong, M. L. (2006). Cryst. Growth Des. 6, 2543-2550.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kahn, O. (2000). Acc. Chem. Res. 33, 647-657.
Leininger, S., Olenyuk, B. \& Stang, P. J. (2000). Chem. Rev. 100, 853-908.
Lin, W. B. \& Wu, C. D. (2007). Angew. Chem. Int. Ed. 46, 1075-1078.
Ma, S. Q., Sun, D. F., Ambrogio, M., Fillinger, J. A., Parkin, S. \& Zhou, H. C. (2007). J. Am. Chem. Soc. 129, 1858-1859.

Naumov, N. G., Cordier, S. \& Perrin, C. (2002). Angew. Chem. Int. Ed. 41, 3002-3004.
Niu, Y. Y., Song, Y. L., Zhang, N., Hou, H. W., Che, D. J., Fan, Y. T., Zhu, Y. \& Duan, C. Y. (2006). Eur. J. Inorg. Chem. pp. 2259-2267.
Pan, L., Liu, H. M., Lei, X. G., Huang, X. Y., Olson, D. H., Turro, N. J. \& Li, J. (2003). Angew. Chem. Int. Ed. 42, 542-546.

Peng, R., Wu, T. \& Li, D. (2005). CrystEngComm, 7, 595-598.
Perera, S., Li, X. P., Soler, M., Schultz, A., Wesdemiotis, C., Moorefield, C. N. \& Newkome, G. R. (2010). Angew. Chem. Int. Ed. 49, 6539-6544.
Rath, N. P., Maxwell, J. L. \& Holt, E. M. (1986). J. Chem. Soc. Dalton Trans. pp. 2449-2453.
Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. \& Yaghi, O. M. (2003). Science, 300, 1127-1129.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thébault, F., Barnett, S. A., Blake, A. J., Wilson, C., Champness, N. R. \& Schröder, M. (2006). Inorg. Chem. 45, 6179-6187.
Tulsky, E. G., Crawford, N. R. M., Baudron, S. A., Batail, P. \& Long, J. R. (2003). J. Am. Chem. Soc. 125, 15543-15553.

Wang, X. L., Bi, Y. F., Chen, B. K., Lin, H. Y. \& Liu, G. C. (2008). Inorg. Chem. 47, 2442-2448.
Yang, Z., Chen, Y., Ni, C. Y., Ren, Z. G., Wang, H. F., Li, H. X. \& Lang, J. P. (2011). Inorg. Chem. Commun. 14, 1537-1540.

